

DRAFT ADEON Project Dictionary (Terminology Standard) Version 2

Atlantic Deepwater Ecosystem Observatory Network (ADEON): An Integrated System for Long-Term Monitoring of Ecological and Human Factors on the Outer Continental Shelf

Contract: M16PC00003

Jennifer Miksis-Olds Lead PI

John Macri Program Manager

21 December 2017

Approvals:

Jennifer Miksis-Olds (Lead PI)

21 December 2017 Date

John Macri (PM)

21 December 2017 Date

TNO report

Date

Project number

TNO 2017 R11191 DRAFT 2 Project Dictionary (Terminology Standard)

December 2017

Oude Waalsdorperweg 63 2597 AK Den Haag P.O. Box 96864 2509 JG The Hague The Netherlands

www.tno.nl

for life

T +31 88 866 10 00 F +31 70 328 09 61

Author(s) M.A. Ainslie C.A.F. de Jong B. Martin J.L. Miksis-Olds J.D. Warren K.D. Heaney Copy no No. of copies Number of pages 45 (incl. appendices) Number of 2 appendices Sponsor Project name ADEON

Suggested citation: Ainslie, M. A., de Jong, C. A. F., Martin, B., Miksis-Olds, J. L., Warren, J. D., Heaney, K. D. (2017). Project Dictionary (Terminology Standard). DRAFT. Technical report by TNO for ADEON Prime Contract No. M16PC00003.

Disclaimer: The results presented herein are relevant within the specific context described in this report. They could be misinterpreted if not considered in the light of all the information contained in this report. Accordingly, if information from this report is used in documents released to the public or to regulatory bodies, such documents must clearly cite the original report, which shall be made readily available to the recipients in integral and unedited form.

Contents

1	Abbreviations	3
2	Introduction	5
2.1	ADEON project	5
2.2	Objectives	5
2.3	What is a soundscape?	6
2.4	Use of Standardized Terminology	7
2.5	Purpose of this report	7
2.6	Report structure	7
3	Mathematical symbols and conventions	9
3.1	Logarithms	9
3.2	Spectra (Fourier transform pairs)	9
4	General acoustical terminology	10
5	Acoustical terminology for soundscape description	13
6	Acoustical terminology for hardware	16
7	Levels and other logarithmic quantities usually expressed in decibels	25
7.1	Level of a power quantity	25
7.2	Level of a field quantity	25
7.3	Definitions of levels and other logarithmic quantities usually expressed in decib	els 26
8	Acoustical Terminology for soundscape data processing	20
_		
9	Acoustical terminology for soundscape reporting	35
9.1	Reporting quantities (general)	35
9.2	Reporting levels and other quantities usually reported in decidels	35
9.3	Summary	36
9.4	Reporting quantities in a table	36
9.5	Deprecation of dBx, dB X and dBX	37
9.0	Use of appreviations in equations	31
10	References	38
	Appendices	

A Selected terminology from IEEE 1421 (informative)

B Non-acoustical terminology (normative)

1 Abbreviations

Acoustical and non-acoustical abbreviations are listed in Table 1 and Table 2, respectively.

Abbreviation	Meaning
AAF	Anti-alias filter
ADC	analog to digital converter
AZFP	acoustic zooplankton fish profiler
Lrms	root-mean-square sound pressure level (synonym of sound
	pressure level – see also SPL)
Lpk	zero-to-peak sound pressure level (synonym of peak sound
	pressure level)
PL	propagation loss
ROC	receiver operating characteristic (curve)
SEL	sound exposure level
SELw	weighted sound exposure level
ESDL	sound exposure spectral density level
SL	source level
SPL	sound pressure level (synonym of root-mean-square sound
	pressure level – see also Lrms)
PSDL	mean-square sound pressure spectral density level
SWL	sound power level
TL	transmission loss

Table 1 – Acoustical abbreviations.

Table 2 – Non-acoustical abbreviations.

Abbreviation	Meaning
ADEON	Atlantic Deepwater Ecosystem Observatory Network
AIS	Automatic Identification System (for shipping)
AM	arithmetic mean
ANSI	American National Standards Institute
BIPM	International Bureau of Weights and Measures
BOEM	Bureau of Ocean Energy Management
cdf	cumulative probability distribution function
EC	European Commission
ESA	Endangered Species Act
EU	European Union
GES	(MSFD) Good Environmental Status
GM	geometric mean
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronics Engineers
IQOE	International Quiet Ocean Experiment
ISO	International Organization for Standardization
ISQ	International System of Quantities
IWC	International Whaling Commission
JASCO	JASCO Applied Sciences

Abbreviation	Meaning
JIP	E&P Sound and Marine Life Joint Industry Programme
JIP UA-R	JIP reporting standard (Ainslie & de Jong, 2017)
JIP UA-T	JIP terminology standard (Ainslie et al., 2017b)
LSB	least significant bit
MMPA	Marine Mammal Protection Act
MS	(EU) Member State
MSFD	(EU) Marine Strategy Framework Directive
NA	not applicable
NMFS	NOAA National Marine Fisheries Service
NOAA	National Oceanic and Atmospheric Administration
OASIS	Ocean Acoustical Services and Instrumentation Systems, Inc.
OCS	outer continental shelf
ONR	Office of Naval Research
ONR-G	ONR Global
P.I.	Principal Investigator
rms	root-mean-square (square root of the mean-square value)
rss	root-sum-square (square root of the summed squared value)
SBU	Stony Brook University
SFA	Sustainable Fisheries Act
SI	International System of Units
SWFSC	NOAA Southwest Fisheries Science Center
TNO	Netherlands Organisation for Applied Scientific Research
TSG Noise	(EU expert group) Technical Sub-Group Noise
UNH	University of New Hampshire
UTC	Coordinated Universal Time

2 Introduction

2.1 ADEON project

The Atlantic Deepwater Ecosystem Observatory Network (ADEON) is a five-year study of the US Mid- and South Atlantic Outer Continental Shelf (OCS). The lead P.I. for this project is Dr. Jennifer Miksis-Olds, University of New Hampshire (UNH). Dr. Miksis-Olds leads a collaborative research team consisting of individuals from UNH, OASIS, TNO, JASCO, Stony Brook University, and NOAA.

This observatory network will generate multi-year measurements of the natural and human factors that describe the ecology and soundscape of the OCS. Multi-year observations of living marine resources and marine sound will assist Federal agencies, including BOEM, ONR, and NOAA, in complying with mandates in the Endangered Species Act (ESA), Marine Mammal Protection Act (MMPA), and Sustainable Fisheries Act (SFA).

2.2 Objectives

2.2.1 ADEON project objectives

The ADEON project objectives are to:

- Establish an ecosystem observation network that provides baseline monitoring and supports predictive modeling of the soundscape and its relationship to marine life and the environment of the Mid- and South Atlantic Planning Areas.
- Develop standardized measurement and processing methods and visualization metrics for comparing ADEON observations with data from other monitoring networks.
- Assess baseline soundscape and ecosystem conditions in support of predictive environmental modeling and trend analyses in the planning areas.
 - How do soundscape and ecosystem components vary with water depth across the OCS?
 - How do the soundscape and ecosystem components vary with latitude along the OCS?
 - Where are the hot spots of human activity for consideration in ecosystem/habitat health impacts?
- Assess the spatial and temporal distribution of the soundscape and biological scatterers, including their expected variation and correlation with distance from the mooring locations.
 - What are the environmental factors that define and constrain the horizontal range of appropriate extrapolation of observations measured at the stationary bottom lander sites?
- Develop and apply new methods for the effective visualization of fivedimensional (5D – time, latitude, longitude, frequency, and depth) soundscape data with interactive visual analysis tools that enable users to explore, analyze, and integrate ancillary ecosystem data streams with the 5D soundscape.
- Develop a robust data management system that archives and provides public access to multiple data streams to encourage future development of ecological models targeted at questions beyond the scope of this study.

2.2.2 ADEON Standardization objectives

The objectives of ADEON's Standardization task are to:

- Ensure compatibility within ADEON between soundscapes based on measurements and those based on models.
- Ensure compatibility between measurements made by different researchers or institutes within ADEON.
- Facilitate compatibility between ADEON soundscapes, whether based on measurement or model prediction, and soundscapes produced by a hypothetical future or parallel project within the US EEZ.
- Facilitate compatibility between metrics used to quantify ADEON soundscapes and those used to monitor ambient sound in the context of the EU's MSFD.

This report, the draft *Project Dictionary (Terminology Standard)*, completes the set of five (draft) Standardization reports, which together meet the above four objectives. The purpose of the Project Dictionary is to provide a common language for the other four documents.

2.3 What is a soundscape?

For airborne acoustics, in the context of human hearing, the term "soundscape" usually implies an element of perception of the sound. For example, entry 2.3 of ISO 12913-1:2014 defines this term as "acoustic environment as perceived or experienced and/or understood by a person or people, in context". However, the same term is used without this implication in contexts other than human hearing, both in air (Pijanowski et al., 2011; Farina and Pieretti, 2012; Gage and Axel, 2014) and in water (Fay, 2009; Dugan et al., 2013; Hastings and Širović, 2015). For this reason, the definition of "soundscape" according to the international underwater acoustical terminology standard ISO 18405 also excludes a perception element. Following ISO 18405, ADEON therefore defines the terms 'soundscape' and 'ambient sound' as shown in Figure 1 and Figure 2, respectively. The related terms "auditory scene" and "auditory stream" are in use to describe the perception of a soundscape by a listener (Hulse, 2002; Shamma et al., 2011).

soundscape

<underwater acoustics> characterization of the *ambient sound* (3.1.1.2) in terms of its spatial, temporal and frequency attributes, and the types of sources contributing to the sound field

Figure 1 – Definition of "soundscape" from ISO 18405:2017.

^{3.1.1.3}

3.1.1.2 ambient sound <i>sound</i> (<u>3.1.1.1</u>) that would be present in the absence of a specified activity
Note 1 to entry: Ambient sound is location-specific and time-specific.
Note 2 to entry: In the absence of a specified activity, all sound is ambient sound.
Note 3 to entry: Ambient sound includes ambient noise (3.1.5.11).
Note 4 to entry: Examples of specified activity include the act of measuring the underwater sound and the radiation of sound by specified sound sources.
Note 5 to entry: Ambient sound can be anthropogenic (e.g. shipping) or natural (e.g. wind, biota).

Figure 2 – Definition of "ambient sound" from ISO 18405:2017.

2.4 Use of Standardized Terminology

The terminology standard ISO 18405:2017 'Underwater Acoustics – Terminology' has international consensus and was developed specifically for underwater acoustics. The main alternative to ISO 18405 was ANSI S1.1-2013 'Acoustical Terminology'. ANSI S1.1 contains bioacoustical terminology for human hearing in air (for example, by default sound exposure level as defined by ANSI S1.1-2013 is A-weighted) and for biological contributions to sonar noise and reverberation. However, bioacoustical terminology relevant to aquatic animals and to underwater soundscapes is outside the scope of ANSI S1.1-2013, making ISO 18405 a natural choice for ADEON. ISO 18405 has been adopted by the ADEON project and is followed throughout this report.

Every attempt has been made by the ADEON project to follow relevant international standards. Nevertheless where there is a project-specific need to depart from an international standard, this is achieved by giving the ADEON standard precedence over all others. For acoustical terminology, the following standards are followed, in order of decreasing precedence

- Project Dictionary (Terminology Standard) (this document)
- ISO 18405:2017 Underwater Acoustics Terminology
- ISO 80000-8:2007 Quantities and Units Acoustics
- ISO 80000-3:2006 Quantities and Units Space and Time
- ISO 80000-1:2009 Quantities and Units General

2.5 Purpose of this report

The purpose of this report is to provide terminology for the ADEON project. The project's focus on soundscapes means that the main focus of this report is on acoustical terminology relevant to soundscapes.

2.6 Report structure

The remainder of this report is structured as follows:

- Sec. 3: Mathematical symbols and conventions
- Sec. 4: General acoustical terminology

- Sec. 5: Acoustical terminology for soundscape description
- Sec. 6: Acoustical terminology for hardware
- Sec. 7: Levels and other logarithmic quantities usually expressed in decibels
- Sec. 8: Acoustical Terminology for soundscape data processing
- Sec. 9: Acoustical terminology for soundscape reporting
- Sec. 10 References
- Appendix A: Selected terminology from IEEE 1421 (informative)
- Appendix B: Non-acoustical terminology (normative)

3 Mathematical symbols and conventions

For mathematical symbols generally, ISO 80000-2 shall be followed. Functions and operations of particular relevance include logarithms and Fourier transforms.

3.1 Logarithms

Symbols for natural, base 2 and base 10 logarithms are listed in Table 3.

type of logarithm	Symbol	alternative symbol	notes
base 2	$\log_2 x$	lb x	
base e	log _e x	$\ln x$	also known as natural logarithm
base 10	$\log_{10} x$	$\log x$	

Table 3 – Standard symbols for logarithms (ISO 80000-2:2009).

3.2 Spectra (Fourier transform pairs)

As a general rule a lower case symbol is used for a time domain quantity such as sound pressure, p(t), or source waveform, s(t), with the upper case symbols P(f) and S(f) for the corresponding Fourier transforms (ISO 80000-2). Specifically, if x(t) and X(f) form a Fourier transform pair, they are related by

$$X(f) = \int_{-\infty}^{+\infty} x(t) \exp(-2\pi i f t) dt$$
$$x(t) = \int_{-\infty}^{-\infty} X(f) \exp(+2\pi i f t) dt.$$

4 General acoustical terminology

General acoustical terminology is defined in Table 4 (concepts), Table 5 (frequency bands) and Table 6 (basic sound field properties).

Table 4 – General acoustical terminology: concepts.

term	Definition
sound	alteration in pressure, stress or material displacement propagated via the action of elastic stresses in an elastic medium and that involves local compression and expansion of the medium, or the superposition of such propagated alterations
	NOTES: Source: ISO 18405. entry 3.1.1.1
	If only acoustic pressure fluctuations are present (implying the absence of mean flow and turbulence), the total pressure at a location is the background
ambient sound	sound that would be present in the absence of a specified activity
	NOTES:
	see Figure 2
	source: ISO 18405, entry 3.1.1.2
soundscape	 <underwater acoustics=""> characterization of the <i>ambient sound</i> in terms of its</underwater>
	spatial, temporal and frequency attributes, and the types of sources contributing
	to the sound field
	NOTES:
	see Figure 1
material element	Source: ISO 18405, entry 3.1.1.3
	smallest element of the medium that represents the medium's mean density
	NOTES:
· · ·	Source: ISO 18405, entry 3.1.1.5
signal	specified time-varying electric current, voltage, sound pressure, sound particle
	NOTES:
	Source: ISO 18405, entry 3.1.5.8
acoustic self-	sound at a receiver caused by the deployment, operation, or recovery of a
noise	specified receiver, and its associated platform
	NOTEO
	NUTES: Source: ISO 18405, entry 3 1 5 10
ambient noise	sound except acoustic self-noise and except sound associated with a specified
	signal

term	Definition
	NOTES: Source: ISO 18405, entry 3.1.5.11
temporal observation window	interval of time within which a statistic of the sound pressure is calculated or estimated
	NOTES : Examples of statistic include rms sound pressure, peak sound pressure, and sound pressure kurtosis.
temporal analysis window	interval of time during which statistics are calculated over multiple temporal observation windows
spatial observation window	region of space within which the spatially averaged mean-square sound pressure is calculated or estimated, for a specified duration of the temporal observation window
	NOTES : The size of a spatial observation window is specified by means of an area (e.g., 1000 km ²) and a depth range (e.g., 50 m to 200 m).
spatial analysis window	region of space within which statistics are calculated over multiple spatial observation windows
	NOTES : The size of a spatial analysis window is specified by means of an area (e.g., 100 000 km ²) and a depth range (e.g., 50 m to 200 m).

Table 5 – General	acoustical	terminolog	v [.] frea	uency	bands
	accaction	commonog	<i>j</i>	aonoy	banao.

term	Definition
octave	logarithmic frequency interval between frequencies f_1 and f_2 when $f_2/f_1 = 2$
symbol: oct	NOTES:
	Based on ISO 80000-8:2007. The formal definition of this unit is "1 oct := Ib $2 = 1$ ".
decade	logarithmic frequency interval between frequencies f_1 and f_2 when $f_2/f_1 = 10$
symbol: dec	
	NOTES:
	Based on ISO 80000-8:2007. The formal definition of this unit is "1 dec := Ib 10 = (Ib 10) oct".
	1 dec ≈ 3.322 oct
	Standard decade bands adopted by ADEON are specified in Table 6 of Ainslie et al. (2017a).
one-third octave	one third of an octave
synonym: one-third	NOTES:
octave (base 2)	

term	Definition		
symbol: oct	From ISO 18405, entry 3.1.4.1. One one-third octave is approximately		
	equal to a decidecade: 1/3 oct ≈ 1.003 ddec		
decidecade	one tenth of a decade		
synonym: one-third	NOTES:		
octave (base 10)	From ISO 18405, entry 3.1.4.2. One decidecade is approximately equal to		
symbol: ddec	a one-third octave: 1 ddec ≈ 0.3322 oct.		
	International standard decidecade bands adopted by ADEON are specified		
	in Table 5 of Ainslie et al. (2017a).		

Table 6 – General acoustical terminology: basic sound field properties.

term	Definition		
sound pressure	contribution to total pressure caused by the action of sound		
	contribution to total pressure caused by the action of sound		
even beli v (t)	NOTES		
symbol. $p(t)$			
unit: Pa	Source: ISO 18405, entry 3.1.2.1		
sound pressure spectrum	Fourier transform of the sound pressure		
synonym: complex	NOTES:		
sound pressure spectrum	Source: ISO 18405, entry 3.1.2.2		
symbol: $P(f)$			
unit: Pa/Hz			
sound particle	displacement of a material element caused by the action of sound		
displacement			
	NOTES		
symbol: $\delta(t)$	Source: ISO 18405 entry 3 1 2 9		
unit: m			
ann. In	contribution to valuative of a material alament sourced by the action of		
sound particle velocity			
	sound		
symbol: $u(t)$			
unit: m/s	NOTES:		
	Source: ISO 18405, entry 3.1.2.10		
sound particle	contribution to acceleration of a <i>material element</i> caused by the action		
acceleration	of sound		
symbol: $a(t)$	NOTES:		
unit: m/s ²	Source: ISO 18405, entry 3.1.2.11		

5 Acoustical terminology for soundscape description

Qualitative descriptions of concepts like "sound" and "soundscape" are needed (see Table 4) before the physical characteristics of these concepts (Table 7) and properties of sound sources (Table 8) can be quantified.

Table 7 – Sound field metrics (see Sec. 7 for definitions of logarithmic quantities such as levels and level differences).

preferred term	Definition
zero-to-peak sound pressure	greatest magnitude of the sound pressure during a specified time
	interval, for a specified frequency range
synonym: peak sound	
pressure; peak amplitude	NOTES:
symbol: $p_{0-\mathrm{pk}}; p_{\mathrm{pk}}$	Source: ISO 18405, entry 3.1.2.3
unit: Pa	
mean-square sound pressure	integral over a specified time interval of squared sound pressure,
	divided by the duration of the time interval, for a specified frequency
symbol: p ²	range
unit: Pa ²	
	Source: ISO 18405, entry 3.1.3.1
time-integrated squared	 <underwater acoustics=""> integral of the square of the sound</underwater>
souna pressure	pressure, p, over a specified time interval or event, for a specified
supervise sound prossure	irequency range
	NOTES
symbol: F	NOTES. Source: ISO 18405, entry 3 1 3 5
unit: $Pa^2 s$	Source. 130 10403, entry 3.1.3.3
	<underwater a="" acquetices="" as="" distribution="" function="" non-negative<="" of="" td=""></underwater>
spectral density	frequency of the time-integrated squared sound pressure per unit
spectral density	bandwidth of a sound baying a continuous spectrum
synonym: sound exposure	
spectral density	NOTES:
	Source: ISO 18405. entry 3.1.3.9
symbol: <i>E_f</i>	
unit: Pa ² s/Hz	
mean-square sound pressure	distribution as a function of non-negative frequency of the mean-
spectral density	square sound pressure per unit bandwidth of a sound having a
	continuous spectrum
symbol: $(\overline{p^2})_f$	
unit: Pa²/Hz	NOTES:
	Source: ISO 18405, entry 3.1.3.13
average mean-square sound	spatially averaged mean-square sound pressure, for a specified
pressure	averaging time, specified frequency band, and specified averaging
	volume
symbol: $\langle p^2 \rangle$	
unit: Pa ²	NOTES:
	The average mean-square sound pressure is needed for spatial
	statistics.

preferred term	Definition
sound pressure kurtosis	kurtosis of the sound pressure, $p(t)$, over a specified time interval, t_1
	to t_2 , for a specified frequency range
symbol: β	
unit: 1	NOTES:
	Source: ISO 18405, entry 3.1.5.5

Table 8 – Source properties.

preferred term	Definition
source waveform	product of distance in a specified direction, r, from the acoustic
	centre of a sound source and the delayed far-field sound pressure,
symbol: s	$p(t - t_0 + r/c)$, for a specified time origin, t_0 , if placed in a
unit: Pa m	hypothetical infinite uniform lossless medium of the same density
	and sound speed, <i>c</i> , as the actual medium at the location of the
	source, with identical motion of all acoustically active surfaces as the
	actual source in the actual medium, where t is time
	Based on ISO 18405, entry 3.3.1.4. Modifications to ISO 18405 are
	shown in blue text
source spectrum	Fourier transform of the source waveform
symbol: S	NOTES:
unit: Pa m/Hz	Source: ISO 18405, entry 3.3.1.8
source factor	product of the square of the distance from the acoustic centre of a
	sound source, in a specified direction, r^2 , and mean-square sound
symbol: F _S ; F _{S,mp}	<i>pressure</i> in the acoustic far field at that distance, $\overline{p^2}$, of a sound
unit: Pa² m²	source, if placed in a hypothetical infinite uniform lossless medium of
	the same density and sound speed as the real medium at the
	location of the source, with identical motion of all acoustically active
	surfaces as the true source in the true medium
	NOTES
	NUTES. Based on ISO 19405, entry 2.2.1.6. Medifications to ISO 19405 are
	shown in blue text
source factor spectral	ratio of source factor in a specified frequency band to the width of
density	that frequency band
symbol : <i>F</i> _{S,<i>f</i>} ; <i>F</i> _{S,<i>f</i>,mp}	
unit: Pa² m²/Hz	
surface-affected source	product of distance in a specified direction, r, from the acoustic
waveform	centre of a sound source and its sea surface-reflected image and the
	delayed far-field sound pressure, $p(t - t_0 + r/c)$, for a specified
symbol: s'	time origin, t_0 , if placed in a hypothetical semi-infinite uniform
unit: Pa m	lossless medium of the same density and sound speed, c, as the
	actual medium at the location of the source, with identical motion of
	all acoustically active surfaces as the actual source in the actual
	medium, where <i>t</i> is time
	NOTES
	NUIES.

preferred term	Definition
	Source: ISO 18405, entry 3.3.1.7
surface-affected source spectrum	Fourier transform of the surface-affected source waveform
	NOTES:
symbol: <i>S'</i> unit: Pa m/Hz	Source: ISO 18405, entry 3.3.1.9
surface-affected source factor symbol : <i>F</i> _{S,dp} unit : Pa ² m ²	product of the square of the distance from the <i>acoustic centre</i> of a sound source and its sea surface-reflected image, in a specified direction, r^2 , and <i>mean-square sound pressure</i> in the <i>acoustic far field</i> at that distance, $\overline{p^2}$, of a sound source, if placed in a hypothetical semi-infinite uniform lossless medium of the same density and sound speed as the real medium at the location of the source, with identical motion of all acoustically active surfaces as the
	true source in the true medium NOTES :
	needed for the specification of wind source level
surface-affected source factor spectral density	ratio of surface-affected source factor in a specified frequency band to the width of that frequency band
symbol : <i>F</i> _{S,<i>f</i>,dp} unit : Pa ² m²/Hz	
areic source factor spectral density	ratio of source factor spectral density from a specified region of the surface to the area of that specified region
symbol: $F_{S,f,a}$; $F_{S,f,a,mp}$ unit: Pa ² m ² Hz ⁻¹ /m ²	NOTES : An alternative way of writing the unit is Pa ² Hz ⁻¹ . However, the full form Pa ² m ² Hz ⁻¹ /m ² is preferred to avoid the risk of confusion with the unit for mean-square sound pressure spectral density.
areic surface-affected source factor spectral density	ratio of surface-affected source factor spectral density from a specified region of the surface, evaluated in the vertical direction, to the area of that specified region
symbol: <i>F</i> _{S,<i>f</i>,<i>a</i>,dp}	
unit: Pa²m²Hz ⁻¹ /m²	NOTES : An alternative way of writing the unit is Pa ² Hz ⁻¹ . However, the full form Pa ² m ² Hz ⁻¹ /m ² is preferred to avoid the risk of confusion with the unit for mean-square sound pressure spectral density.

6 Acoustical terminology for hardware

This section describes the terminology needed for the ADEON hardware specification (Martin et al., 2017). The description includes a list of concepts (Table 9), followed by a sequence of tables listing the terminology used for characterizing the properties of a hydrophone (Table 10), a pre-amplifier and an anti-alias filter (AAF) (Table 11), a passive acoustic recorder system (comprising one hydrophone, one pre-amplifier, one AAF, and one analog to digital converter (ADC); Table 12), and the terminology related to active acoustic echo sounders (Table 13).

Table 9. Acoustical terminology for ADEON hardware specification: Concepts.

Term	Definition
	transducer designed to convert underwater sound to electricity
hydrophone	NOTES: hydrophone input = system input
hydrophone input	pressure fluctuation in the water at the sensitive face of the
synonym: system input	nyaropnone
hydrophone output	variable capacitance voltage that changes in response to the hydrophone input
pre-amplifier	electronic component that increases the amplitude of an electric current or voltage
anti-alias filter (AAF)	low-pass filter that avoids undersampling of an analog signal during digitization by removing frequencies above the Nyquist frequency of the analog-to-digital converter
analog-to-digital converter	electronic component that samples an analog electric current or voltage into a digitized representation of that electric current or voltage
(ADC)	NOTES : Compare IEEE 1241: "A device that converts a continuous time signal into a discrete-time discrete-amplitude signal."
	sequence of electronic components comprising (in this order) a hydrophone, a pre-amplifier, an AAF, and an ADC
system	NOTES : System processing starts with the hydrophone converting pressure fluctuations into electrical ones. "System input" is therefore synonymous with "hydrophone input".
	fluctuations into digital counts. "System output" is therefore synonymous with "ADC output".
ADC input	generic term referring to an analog representation of the ADC input such as current or voltage

Term	Definition
ADC output	generic term referring to a digital representation of the ADC input, suitable for storage in a digital storage medium or processing on a digital computer
synonym. system output	single transmission from the sonar projectors in an echo sounder
ping	NOTES : A ping can be transmitted at multiple frequencies for capable instruments.
burst	sequence of pings closely spaced in time over which the measured backscattering can be averaged to increase signal to noise ratio
acoustic zooplankton fish profiler	remotely deployed echo sounder designed to provide information about the distribution with depth of fish and zooplankton
crosstalk	undesired energy appearing in a signal as a result of coupling from other signals
	NOTES:
	Compare IEEE 1241: "Undesired energy appearing in a signal as a result of coupling from other signals."

Table 10.	Acoustical terminology for ADEON hardware specification: Quantities used to characterize
	a hydrophone.

Preferred term	Definition
free-field voltage sensitivity	ratio of the rms open-circuit output voltage to the rms spatially- averaged sound pressure in the undisturbed plane-progressive free field
synonym : voltage sensitivity symbol : $M_{hp,V}$ unit : V Pa ⁻¹	NOTES : Free-field voltage sensitivity is a property of a voltage hydrophone, for a specified frequency band and a specified direction of sound incidence. Adapted from IEV 801-25-53
free-field current sensitivity	ratio of the rms short-circuit output current to the rms spatially- averaged sound pressure in the undisturbed plane-progressive free field
synonym : current sensitivity symbol : $M_{hp,l}$ unit : A^{-1}	NOTES : Free-field current sensitivity is a property of a current hydrophone, for a specified frequency band and a specified direction of sound incidence.
	Adapted from IEV 801-25-56
equivalent rms hydrophone noise sound pressure	ratio of the rms open-circuit output voltage to the free-field voltage sensitivity
symbol: p _{N,eq} unit: Pa	Adapted from ISO 18405 (3.6.1.15)
hydrophone non-acoustic self-noise voltage	open-circuit output voltage in the absence of sound pressure at the hydrophone input
unit: V	
hydrophone mean-square non-acoustic self-noise voltage spectral density	ratio of mean-square hydrophone non-acoustic self-noise voltage in a
synonym: self-noise voltage spectral density unit: V ² /Hz	specified frequency band to the width of the frequency band
equivalent hydrophone mean-square non-acoustic self-noise sound pressure spectral density	ratio of hydrophone mean-square non-acoustic self-noise voltage spectral density to the squared free-field voltage sensitivity
synonym : hydrophone self- noise sound pressure spectral density unit : Pa ² /Hz	
hydrophone self-noise spectral density	mean-square self-noise voltage spectral density at the hydrophone output divided by the squared free-field open-circuit hydrophone voltage sensitivity

 Table 11.
 Acoustical terminology for ADEON hardware specification: Quantities used to characterize a digital sampling system, including pre-amplifier and anti-alias filter (AAF).

Preferred term	Definition
integer ADC output	integer representation of ADC output, defined such that a unit change in integer ADC output corresponds to a change in the lowest significant bit from 0 to 1 or from 1 to 0
symbol: <i>N</i> unit: 1	NOTES : The integer ADC output is equal to the product of ADC sensitivity to voltage and ADC input voltage.
maximum integer ADC output symbol: N _{max} unit: 1	largest possible value of the integer ADC output
minimum integer ADC output symbol: N _{min} unit: 1	smallest possible value of the integer ADC output
full-scale ADC output symbol : <i>N</i> _{FS} unit : 1	difference between maximum integer ADC output and minimum integer ADC output
bit depth synonym : word size symbol : N _{bit} unit : bit	amount of digital memory available at ADC output to digitize one value of ADC input
ADC sensitivity to voltage symbol: $M_{ADC,V}$ unit: V^{-1}	ratio of rms integer ADC output to rms ADC input voltage
ADC voltage conversion factor symbol : μ_V unit : V	reciprocal of ADC sensitivity to voltage
maximum unsaturated voltage symbol: v _{max} unit: V	maximum ADC input voltage for which the ADC sensitivity to voltage is independent of ADC input
minimum unsaturated voltage symbol: v_{\min} unit: V	minimum ADC input voltage for which the ADC sensitivity to voltage is independent of ADC input

Preferred term	Definition
full-scale input range	difference between maximum unsaturated voltage and minimum unsaturated voltage
synonym: full-scale voltage abbreviation: full-scale range; FSR	NOTES : Compare IEEE 1241 ('full-scale range', p13): "The difference between the most positive and most negative analog inputs of a converter's operating range. For an <i>N</i> -bit converter, FSR is given by: FSR = $(2^N)x(\text{ideal code width})$ in analog input units."
ideal code bin width	full-scale input range divided by $2^{N_{FS}+1}$, where N_{FS} is the full-scale ADC output
synonym : least significant bit; ADC output step size abbreviation : ideal code width symbol : <i>Q</i>	NOTES : Compare IEEE 1241 ('ideal code bin width', p14): "The ideal full-scale input range divided by the total number of code bins." 'least significant bit', p14: "With reference to analog-to-digital converter input signal amplitude, an LSB [least significant bit] is synonymous with one ideal code bin width."
equivalent mean-square ADC self-noise voltage abbreviation : ADC self- noise voltage symbol : $V_{N,eq}^2$ unit : V	ratio of mean-square integer ADC output to the squared ADC sensitivity to voltage
pre-amplifier voltage gain symbol : <i>G</i> _{pA,V} unit : 1	ratio of rms pre-amplifier output voltage to rms pre-amplifier input voltage
AAF voltage gain symbol : <i>G</i> _{AAF,V} unit : 1	ratio of rms AAF output voltage to rms AAF input voltage
full-scale signal	signal whose peak-to-peak value spans the entire range of input values recordable by an ADC, from minimum unsaturated voltage to maximum unsaturated voltage
abbreviation: FSR	NOTES : Compare IEEE 1241 (p13): "A full-scale signal is one whose peak-to-peak amplitude spans the entire range of input values recordable by the analog- to-digital converter under test."

Preferred term	Definition
non-acoustic self-noise	fluctuations in voltage in an acoustic receiver in the absence of sound pressure input NOTES: Based on ISO 18405. Note 1 to entry: In a digital receiver system, the voltage might be converted to a digital representation of the original voltage. In this situation, the word "voltage" in this definition is to be interpreted as "voltage that would have been generated in an equivalent analogue receiver system". EXAMPLE Electrical noise.
signal-to-noise-and- distortion ratio abbreviation : SINAD	square root of the signal to noise power ratio at the ADC output NOTES : Compare IEEE 1241 (p16): "For a pure sine-wave input of specified amplitude and frequency, the ratio of the root-mean-square (rms) amplitude of the analog-to-digital converter output signal to the rms amplitude of the output noise, where noise is defined as above to include not only random errors but also nonlinear distortion and the effects of sampling time errors."

 Table 12.
 Acoustical terminology for ADEON hardware specification: Quantities used to characterize the passive data recorder acquisition system.

Preferred term	Definition
total system sensitivity	ratio of rms integer ADC output to the rms spatially-averaged sound pressure in the undisturbed plane-progressive free field
symbol: <i>M</i> _{tot} unit: Pa ⁻¹	NOTES : For a voltage hydrophone, the total system sensitivity is related to the hydrophone and ADC sensitivities according to $M_{\text{tot}} = M_{\text{hp},V}G_{\text{pA},V}G_{\text{AAF},V}M_{\text{ADC},V}.$
system non-acoustic self-noise output	overtage output in the changes of sound pressure at the
synonym : system self-noise output; ADC self-noise output	hydrophone input
unit: 1	
system mean-square non- acoustic self-noise output spectral density	
synonym : system self-noise output spectral density; ADC self-noise output spectral density	ratio of mean-square ADC non-acoustic self-noise output in a specified frequency band to the width of the frequency band
unit: 1/Hz	
equivalent system mean- square non-acoustic self-noise sound pressure spectral density	ratio of system mean-square non-acoustic self-noise output spectral density to the squared total system sensitivity
sound pressure spectral density	
	time-averaged product of noise current and noise voltage
noise power	NOTES : In an electrical circuit of resistance R , noise power is given by mean-square noise voltage divided by R or mean-square noise current multiplied by R . The noise power depends on the position in the processing chain at which it is determined. The position in the processing chain at which the noise is determined shall be specified.
unit: W	Compare IEEE 12/11 ('noise (total)' n15); "Any deviation
	between the output signal (converted to input units) and the input signal except deviations caused by linear time-invariant system response (gain and phase shift), or a dc level shift. For example, noise includes the effects of random errors (random noise), fixed pattern errors, nonlinearities (e.g., harmonic or intermodulation distortion), and aperture uncertainty. See also: random noise."

Preferred term	Definition
signal power symbol : <i>W</i> s unit: W	time-averaged product of signal current and signal voltage NOTES : In an electrical circuit of resistance <i>R</i> , signal power is given by mean-square signal voltage divided by <i>R</i> or mean-square signal current multiplied by <i>R</i> . The signal power depends on the position in the processing chain at which it is determined. The position in the processing chain at which the signal is determined shall be specified.
signal to noise power ratio synonym : signal to noise ratio symbol : <i>R</i> _{SN} unit : 1	ratio of signal power to noise power NOTES : The signal to noise power ratio depends on the position in the processing chain at which it is determined. The position in the processing chain at which the signal to noise power ratio is determined shall be specified.
intermodulation distortion Abbreviation : IMD	If the input signal contains multiple tones, the generated distortion is not only the integer harmonics of the tones, but also the sums and differences to the tones. This distortion is created due to nonlinearities in the system. It is referred to as intermodulation distortion (IMD). NOTES: When testing for IMD, apply a test signal of two tones each with a level 12 dB below full scale. The magnitude of the IMD signals are found at the sum and differences of the two tones and their harmonics. The THD level of the signal source should be at least 10 dB below the THD of the device under test.
system self-noise spectral density	mean-square self-noise voltage spectral density at the system output divided by the squared system voltage sensitivity

 Table 13.
 Terminology related to the operation and configuration of active acoustic echo sounders: quantities.

Quantity	Definitions
number of pings per burst	number of individual pings in each burst
unit: 1	
burst Interval	difference between the start times of two consecutive bursts NOTES : The burst interval can be equal to the ping period.
unit: s	See Lemon et al. (2012).
pulse duration	duration of the transmitted acoustic excitation pulse
synonym: pulse length unit: s	NOTES: usually expressed in milliseconds (ms)
digitization rate unit: Hz	rate at which echo sounder samples are processed by the ADC when digitizing the returned acoustic signal
ping period unit : s	difference between the start times of two consecutive pings NOTES : See Lemon et al. (2012).
bin size	vertical dimension of the smallest insonified volume an echo sounder can resolve
unit: m	
maximum range	distance, rounded to the nearest bin size that the echo sounder listens for returns NOTES :
unit: m	the instrument.
lockout range	distance, rounded to the nearest bin size after the pulse is transmitted that over which an AZFP will ignore echoes
unit: m	NOTES: The lockout range is selectable by the user. The selected value can be between 0 and the maximum range – 1 m.

7 Levels and other logarithmic quantities usually expressed in decibels

7.1 Level of a power quantity

In general, a level is a logarithm of a ratio of two like quantities. A widely used level in acoustics is the level of a power quantity (ISO 80000-3:2006; IEC 60027-3:2002). A power quantity is one that is proportional to power. The level of a power quantity, P, is the logarithm of that power quantity to a reference value of the same quantity, P_0 , defined such that

$$L_P = 10 \log_{10} \frac{P}{P_0} \text{ dB.}$$

When expressing the value of a level of a power quantity in decibels, the reference value, P_0 , shall be specified. Some common examples, with standard reference values, are listed in Table 14.

Table 14 – Examples of level of a power quantity, and associated reference values for sound in
water (ISO 1683:2015; ISO 18405:2017). For comparison, the final column lists
corresponding reference values for sound in air (ISO 1683).

level, L _P	power quantity, <i>P</i>	reference value (sound	reference value (sound
		in water), P ₀	in air), P ₀
sound exposure level (SEL)	sound exposure	1 μPa² s	400 µPa ² s
mean-square sound	mean-square	1 μPa²/Hz	400 µPa²/Hz
pressure spectral density	sound pressure		
level (PSDL)	spectral density		
sound power level (SWL)	sound power	1 pW	1 pW
sound pressure level	mean-square	1 μPa²	400 µPa ²
(Lrms or SPL)	sound pressure		
source level (SL)	source factor	$1 \mu Pa^2 m^2$	NA

7.2 Level of a field quantity

Also widely used in acoustics is the level of a field quantity (ISO 80000-3:2006; IEC 60027-3:2002). A field quantity is one whose square is proportional to power. The level of a field quantity, *F*, is the logarithm of that field quantity to a reference value of the same quantity, F_0 , defined such that

$$L_F = 20 \log_{10} \frac{F}{F_0} \, \mathrm{dB}.$$

When expressing the value of a level of a field quantity in decibels, the reference value, F_0 , shall be specified. Some examples, with standard reference values, are listed in Table 15. The levels (of the listed field quantities) defined in Table 15 have identical values to the levels of the corresponding power quantities listed in Table 14. The reason for providing both definitions is to clarify that the choice between P_0 (say 1 μ Pa²/Hz) and F_0 (1 μ Pa/Hz^{1/2}) for the reference quantity makes no difference to the value of the level. The level of a power quantity is identical to the level of the corresponding field quantity, defined as the square root of the power quantity (also known as a 'root-power quantity' (ISO 80000-1:2009; Ainslie 2015)).

level, L _F	field quantity, F	reference value (sound	reference value (sound
		in water), F_0	in air), F_0
sound exposure	root-sound	1 uPa s ¹ / ₂	20 µPa $s^{\frac{1}{2}}$
level (SEL)	exposure	F	- F
mean-square	square root of the	$1 \text{ uPa/Hz}^{\frac{1}{2}}$	20 uPa/Hz ¹
sound pressure	mean-square		
spectral density	sound pressure		
level (PSDL)	spectral density		
sound power level	root-sound power	$1 \text{ nW}^{\frac{1}{2}}$	$1 \text{ nW}^{\frac{1}{2}}$
(SWL)		- p	- p
sound pressure	root-mean-square		
level (Lrms or SPL)	sound pressure	1 μPa	20 µPa
source level (SL)	root-source factor	1 μPa m	NA

Table 15 – Examples of level of a field quantity, and associated reference values for sound in water (ISO 1683:2015; ISO 18405:2017). For comparison, the final column lists corresponding reference values for sound in air (ISO 1683).

7.3 Definitions of levels and other logarithmic quantities usually expressed in decibels

Table 16 to Table 19 define levels and other logarithmic quantities usually expressed in decibels.

Table 16 - Levels and other logarithmic quantities	usually expressed in decibels: sound field metrics.
--	---

quantity	definition
mean-square sound pressure	level of the mean-square sound pressure
level	
	In equation form
synonym: root-mean-square	$I = 10 \ln \frac{p_{\rm rms}^2}{dR}$
sound pressure level; sound	$L_{p,\mathrm{rms}} = 10 \mathrm{Ig} \frac{1}{p_0^2} \mathrm{ub}$
pressure level	reference value:
abbreviation: SPL; Lrms	$p_0^2 = 1 \ \mu \text{Pa}^2$
deprecated: rms SPL; root-	$p_0 = 1 \ \mu Pa$
mean-square SPL; mean-	NOTES:
square SPL	based on ISO 18405, entry 3.2.1.1
symbol: L_p ; $L_{p,rms}$	
	SPL is also equal to the level of the field quantity root-mean-
	square sound pressure.
time-integrated squared sound	level of the time-integrated squared sound pressure
pressure level	
	In equation form
synonym: sound exposure	$L_{\rm res} = 10 {\rm lg} \frac{E}{-} {\rm dB}$
level; sound pressure exposure	$E_{E,p}$ E_0
level	reference value:
abbreviation: SEL	$E_0 = 1 \mu \mathrm{Pa}^2 \mathrm{s}$
symbol: $L_{E,p}$	$E_0^{1/2} = 1 \mu \text{Pa}\text{s}^{1/2}$
reference value : 1 μPa ² s	NOTES:
	based on ISO 18405, entry 3.2.1.5

quantity	definition
sound exposure spectral density level	level of the sound exposure spectral density
	In equation form
abbreviation: ESDL symbol: $L_{E,f}$	$L_{E,f} = 10 \lg \frac{E_f}{E_{f,0}} \mathrm{dB}$
reference value: 1 μPa ² s/Hz	reference value:
	$E_{f,0} = 1 \mu \mathrm{Pa}^2 \mathrm{s/Hz}$
	$E_{f,0}^{1/2} = 1 \mu \mathrm{Pa} \mathrm{s}^{\frac{1}{2}}/\mathrm{Hz}^{1/2}$
	NOTES:
	based on ISO 18405, entry 3.2.1.9
mean-square sound pressure spectral density level	level of the mean-square sound pressure spectral density
	In equation form
abbreviation: PSDL	$\left(\overline{p^2}\right)_f$
symbol: $L_{p,f}$	$L_{p,f} = 10 \lg \frac{f}{(p^2)} dB$
reference value : 1 μPa²/Hz	$(r)_{f,0}$
	$(\overline{p^2})_{f,0} = 1 \mu \text{Pa}^2/\text{Hz}$
	$\sqrt{(\overline{p^2})_{f,0}} = 1 \mu \text{Pa}/\text{Hz}^{1/2}$
	NOTES
	based on ISO 18405, entry 3.2.1.10
zero-to-peak sound pressure level	level of the zero-to-peak sound pressure
	In equation form
synonym: peak sound pressure level	$L_{p,0-pk} = 10 \lg \frac{p_{0-pk}^2}{n_c^2} dB$
abbreviation: Lpk	reference value.
deprecated: peak SPL	$p_0^2 = 1 \mu P a^2$
symbol: $L_{p,0-pk}$; $L_{p,pk}$	$p_0 = 1 \mu Pa$
	NOTES:
	based on ISO 18405, entry 3.2.2.1

Table 17 – Levels and other logarithmic quantities usually expressed in decibels: source metrics.

quantity	definition
source level	level of the source factor
synonym : source factor level; monopole source level abbreviation : SL symbol : <i>L</i> _S ; <i>L</i> _{S,mp}	In equation form $L_{S,mp} = 10 \lg \frac{F_{S,mp}}{F_{S,mp,0}} dB$ reference value: $F_{S,mp,0} = 1 \mu Pa^2 m^2$ $F_{S,mp,0}^{1/2} = 1 \mu Pa m$
	NOTES:
	based on ISO 18405, entry 3.3.2.1
source factor spectral density level	level of the source factor spectral density
	In equation form

quantity	definition
synonym : monopole source spectral density level	$L_{\mathrm{S},f,\mathrm{mp}} = 10 \mathrm{lg} \frac{F_{\mathrm{S},a,f,\mathrm{mp}}}{F_{\mathrm{S},a,f,\mathrm{mp},0}} \mathrm{dB}$
abbreviation: source spectral	reference value:
density level; monopole source	$F_{\mathrm{S},a,f,\mathrm{mp},0} = 1 \mu\mathrm{Pa}^2\mathrm{m}^2/\mathrm{Hz}$
spectrum level (MSSL)	$F_{S.a.f.mp.0}^{1/2} = 1 \mu Pa m/Hz^{1/2}$
symbol: L _{S,f} ; L _{S,f,mp}	-)),)F/-
	NOTES:
	Source factor spectral density is a power quantity.
	This level is needed for correct interpretation of the source
	level associated with ships (Wales and Heitmeyer, 2002).
areic surface-affected source factor	level of the areic surface-affected source factor spectral
spectral density level	density
synonym: areic dipole source	In equation form
spectral density level	$L_{c} = 10 \lg \frac{F_{S,a,f,dp}}{H} dB$
abbreviation: areic surface-affected	$F_{\mathrm{S},a,f,\mathrm{dp}} = 10 \mathrm{fg} F_{\mathrm{S},a,f,\mathrm{dp},0} \mathrm{db}$
source spectral density level; areic	reference value:
dipole source spectrum level	$F_{S,a,f,dp,0} = 1 \mu P a^2 m^2 / (m^2 H z)$
symbol: L _{S,a,f,dp}	$F_{\text{S},a,f,\text{dp},0}^{1/2} = 1 \mu\text{Pa}\text{m}/(\text{m}\text{Hz}^{1/2})$
	NOTES:
	Areic surface-affected source factor spectral density is a
	power quantity.
	This level is needed for correct interpretation of the source
	level associated with wind (Kuperman and Ferla, 1985).

Table 18 – Levels a	nd other logarithmic quantities usually expressed in decibels: propagation and scattering
metrics.	

quantity	definition
transmission loss	reduction in a specified level between two specified points x_1 ,
	x_2 that are within an underwater acoustic field
abbreviation: TL	
symbol: N _{TL}	In equation form, if the specified level is sound pressure level $\Delta L_{\rm TL} = L_{p,\rm rms}(\mathbf{x}_1) - L_{p,\rm rms}(\mathbf{x}_2)$
	or equivalently, using the definition of sound pressure level
	$L_{p,\mathrm{rms}}$
	$N_{\rm TL}(\mathbf{x}) = 10 \lg \frac{p_{\rm rms}^2(\mathbf{x}_1)}{p_{\rm rms}^2(\mathbf{x}_2)} \; { m dB}.$
	NOTES:
	Source: ISO 18405, entry 3.4.1.3
	Transmission loss is the difference between two like levels and
	therefore has no reference value. Compare 'propagation loss'.
propagation loss	the quantity
abbreviation: PL	$N_{\rm PL}(\mathbf{x}) = 10 \lg \frac{F(\mathbf{x})^{-1}}{F_0^{-1}} \mathrm{dB},$

quantity	definition
symbol: N _{PL}	where $F(x)$ is the propagation factor (ISO, 2017; 3.3.1.6), defined as the ratio of mean-square sound pressure (p_{rms}^2) to source factor (<i>S</i>), such that
	and therefore $F(\mathbf{x}) = \frac{p_{\rm rms}^2(\mathbf{x})}{S},$ $F(\mathbf{x})^{-1} = \frac{S}{p_{\rm rms}^2(\mathbf{x})}.$
	reference value: $F_0^{-1} = 1 \text{ m}^2$ $F_0^{-1/2} = 1 \text{ m}$
	NOTES: The formal definition of 'propagation loss' according to ISO 18405 (entry 3.4.1.4) is: "difference between <i>source level</i> (3.3.2.1) in a specified direction, L_S , and <i>mean-square sound</i> <i>pressure level</i> (3.2.1.1), $L_p(x)$, at a specified position, x ". In equation form $N_{PL}(x) = L_S - L_{p,rms}(x)$, or equivalently, using the definitions of source level L_S and sound pressure level $L_{p,rms}$ $N_{PL}(x) = 10 \lg \frac{S/p_{rms}^2(x)}{S_c/n^2} dB.$
	This equation is equivalent to our definition of 'propagation loss' as the level of the reciprocal propagation factor, and explains the origin of $F_0^{-1} = S_0/p_0^2 = 1 \text{ m}^2$ as the reference value for propagation loss.
	Compare transmission loss.
volume backscattering strength	volume scattering strength evaluated in the backscattering
abbreviation: VBS symbol: S _{v,B} reference value: 1 m ⁻¹ sr ⁻¹	

Table 19. Levels and other logarithmic quantities usually expressed in decibels: receiver metrics.

quantity	definition
voltage sensitivity level	the quantity
symbol: L _{M,V}	$L_{M,V} = 10 \lg \frac{M_{hp,V}^2}{M_{V,0}^2} dB,$
	where $M_{hp,V}$ is the free-field voltage sensitivity
	reference value:
	$M_{V,0}^2 = 1 V^2 / \mu P a^2$
	$M_{V,0} = 1 V/\mu Pa$
signal to noise level difference	the quantity $A_{L} = 10 l_{\rm B} d_{\rm B}$
abbreviation: SNR	$\Delta L_{SN} = 10 \text{Ig } R_{SN} \text{uB},$ where R_{CN} is the signal to noise power ratio
symbol: $\Delta L_{\rm SN}$	where K_{SN} is the signal to holde power ratio
	reference value: NA
hydrophone spectral noise floor level	level of the hydrophone self-noise spectral density
symbol: L _{MV hp}	In equation form
101,V,11D	$(p_{Neg}^2)_{,}$
	$L_{M,V,hp} = 10 \lg \frac{d^{-1} k (q) f_{f}}{n^{2} / f_{f}} dB,$
	where $(p_{Neq}^2)_{s}$ is the hydrophone self-noise spectral density
	reference value:
	$p_0^2/f_0 = 1 \mu Pa^2/Hz$
	$p_0/f_0^{\frac{1}{2}} = 1 \mu \text{Pa}/\text{Hz}^{\frac{1}{2}}$
system spectral noise floor level	level of the-system self-noise spectral density
synonym: recorder spectral	In equation form (2)
noise floor ievel	$L_{MW,men} = 10 \lg \frac{(p_{\bar{N},eq})_f}{dR}$
symbol: L _{MV sys}	$p_{M,V,SYS}^{2} = 10 \text{ kg} p_{0}^{2}/f_{0}$
د <i>و</i> د _۱ ۷ به ۲۰ س	where $(p_{\tilde{N},eq})_f$ is the system self-holde spectral density
	reference value:
	$p_0^2/f_0 = 1 \mu Pa^2/Hz$
	$r_{0}^{1}/r_{0}^{2} = r_{0}^{1} r_{0}^{1}/r_{0}^{1}$
dunamia rango	$p_0/f_0^2 = 1 \mu Pa/Hz^2$
dynamic range	$\overline{V_{ac}^2}$
abbreviation: DR	$\Delta L_{\rm DR} = 10 \rm lg \frac{\Gamma_{\rm FS}}{V_{\rm Neg}^2} \rm dB,$
symbol: $\Delta L_{\rm DR}$	where $\overline{V_{FS}^2}$ is the mean-square voltage of a sinusoidal full-
	scale signal and $V_{\text{N.eq}}^2$ is the equivalent mean-square ADC
	self-noise voltage
	reference value. NA
dynamic range abbreviation: DR symbol: ΔL _{DR}	reference value: $p_{0}^{2}/f_{0} = 1 \mu Pa^{2}/Hz$ $p_{0}/f_{0}^{\frac{1}{2}} = 1 \mu Pa/Hz^{\frac{1}{2}}$ the quantity $\Delta L_{DR} = 10 lg \frac{\overline{V_{FS}^{2}}}{V_{N.eq}^{2}} dB,$ where $\overline{V_{FS}^{2}}$ is the mean-square voltage of a sinusoidal full- scale signal and $V_{N.eq}^{2}$ is the equivalent mean-square ADC self-noise voltage reference value: NA

quantity	definition	
total harmonic distortion	the quantity	
abbreviation: THD	$\Delta L_{\rm DR} = 10 \text{lg} \frac{V_2^2 + V_3^2 \dots + V_{n+1}^2}{V_1^2} \text{dB},$	
	where V_1 is the rms voltage of a sinusoidal full-scale signal and $V_2 \dots V_{n+1}$ are the mean-square ADC self-noise voltage of the first <i>n</i> harmonics	
	NOTES: See Sec. 3.4.4.7 of Martin et al. (2017)	
	Compare IEEE 1241 (p17): "For a pure sine-wave input of specified amplitude and frequency, the root-sum-of-square (rss) of all the harmonic distortion components including th aliases in the spectral output of the analog-to-digital converter. Unless otherwise specified, THD is estimated by the rss of the second through the tenth harmonics, inclusiv	
	root-mean-square amplitude of the output component at the input frequency."	

8 Acoustical Terminology for soundscape data processing

Terminology for soundscape data processing is defined in Table 20, Table 21 and Table 22.

Table 20 – Soundscape	e terminology:	concepts.
-----------------------	----------------	-----------

Term	Definition			
echolocation click	forward projected signal of short duration whose primary function is echo ranging, target detection or discrimination NOTES : Echolocation clicks are projected through the melon of toothed whales. Source: ISO 18405, entry 3.7.3.3			
high frequency marine mammal click	echolocation click of center frequency exceeding 8 kHz and duration less than 1000 μs			
raw data	calibrated sound pressure time series NOTES : The raw data are input to the click detection algorithm.			
shipping tonal	sound generated by a sea-going vessel with a bandwidth less than 1 Hz, and duration greater than 20 s			
shipping band	frequency band between 40 Hz and 315 Hz			
rms time series	time series of root-mean-square voltage computed from the raw data over a specified temporal analysis window			
spectrogram detection window	region in a spectrogram identified as a potential signal of interest, and is therefore tagged as worthy of further processing for classification purposes			

Table 21 Soundagen	o torminology	proposing windows	and atatistical magazuras
Table ZT – Sounuscap	e terminology.	processing windows	anu statisticai measures.

preferred term	Definition	
N percent temporal exceedance level	<i>mean-square sound pressure level</i> that is exceeded for $N %$ of the time in a specified analysis window	
symbol: $L_{t,N\%}$	NOTES : Based on entry 3.1.3 of ISO 1996-1:2003.	
	The frequency band, the location, and the duration of the temporal observation window shall be specified.	

preferred term	Definition
Nth temporal level	value of mean-square sound pressure level below which N % of
percentile	observations fall, in a specified analysis window
	NOTES:
	Based on ISO 11064-4: "value of a variable below which a certain
	percentage of observations fall".
	The frequency band, the location, and the duration of the temporal
	observation window shall be specified.
N percent spatial	<i>mean-square sound pressure level</i> that is exceeded for <i>N</i> % of the space
exceedance level	in a specified analysis spatial observation window
as week a lo T	Notes
Symbol: $L_{\chi,N\%}$	NOTES
	The frequency band, the duration of the temporal observation window,
	and the volume, shape and location of the spatial observation window
	shall be specified.
Nth spatial level percentile	value of mean-square sound pressure level below which N % of
	observations fall, in a specified analysis spatial observation window
	NOTES:
	The frequency band, the duration of the temporal observation window,
	and the volume, shape and location of the spatial observation window
	shall be specified.

Table 22 -	Soundscape	terminology:	source	identification.
------------	------------	--------------	--------	-----------------

Term	Definition
minimum spectrogram window frequency	minimum frequency of a spectrogram detection window NOTES : see Table 5 of Heaney et al. (2017)
maximum instantaneous bandwidth	maximum bandwidth in one time bin of a spectrogram detection window that is permitted for a detection NOTES : see Table 5 of Heaney et al. (2017)
centroid frequency	weighted average frequency of a signal, where the frequency weighting function is the power spectral density of the signal NOTES : source: Quan and Harris (1997)

Term	Definition
spectrogram window sweep rate	centroid frequency of the last time bin in a spectrogram detection window, minus the centroid frequency of the first time bin in that window, divided by the duration of the window
	NOTES:
	see Table 5 of Heaney et al. (2017)

9 Acoustical terminology for soundscape reporting

9.1 Reporting quantities (general)

Reporting shall follow the JIP reporting standard Ainslie and de Jong (2017), henceforth abbreviated "JIP UA-R". UA-R follows the International System of Quantities (ISQ) (ISO, 2009), with appropriate exceptions from IEEE 260.1-2014 (IEEE, 2014).

In the ISQ a quantity Q is written

0 = xU.

where *U* is the unit in which the quantity is expressed and *x* is a dimensionless number equal to Q/U (the numerical value of *Q* when expressed in the unit *U*). The value of *Q* may be reported either in the form

O = xU

or (dividing both sides by U)

 $\frac{Q}{U} = x.$

9.2 Reporting levels and other quantities usually reported in decibels

Levels (*L*), sensitivity levels (*N*) and level differences (ΔL) are reported in decibels. Three alternative styles are described below. One of these three styles shall be chosen and followed consistently in any one document.

9.2.1 Style 1 (IEC standard, A)

Style 1 follows IEC 60027-3 (IEC, 2002). According to IEC (2002), the level L of a power quantity P may be reported in the form

 $L_{P/P_0} = x \, \mathrm{dB},$

where P_0 is the reference value. For example if the sound exposure level relative to E_0 is 140 dB (x = 140), this is written

 $L_{E/E_0} = 140 \text{ dB}.$

In this equation the unit is the decibel (dB) and the reference value is P_0 . Sensitivity level (symbol N)

 $N_{S/S_0} = y \, \mathrm{dB},$

where S_0 is the reference value. For example if the hydrophone sensitivity level relative to M_0 is -110 dB (y = -110), this is written

 $N_{M/M_0} = -110 \text{ dB}.$

Level difference ΔL

 $\Delta L_{P_1/P_2} = z \, \mathrm{dB}.$

There is no reference value because P_1 and P_2 are quantities of the same kind (their dimensions and units cancel). For example if the pre-amplifier gain ($G_{pA,V}$), is equal to 10 V/V, the corresponding sensitivity level is 20 dB (z = 20), which is written $\Delta L_c = 20$ dB.

In Style 1, no suffix, subscript or qualifier of any kind follows the unit symbol 'dB'.

9.2.2 Style 2 (UA-R)

UA-R permits an alternative style (Style 2), of the form

$$L_E = 140 \text{ dB re } E_0$$

$$N_M = -110 \text{ dB re } M_0$$

$$\Delta L_G = 20 \text{ dB.}$$

In Style 2, no suffix, subscript or qualifier follows the unit symbol 'dB' except a qualifier of the form 're P_0 ' in the case of a level or a sensitivity level.

9.2.3 Style 3 (IEC standard, B)

IEC, 2002 permits an alternative style (Style 3), of the form

$$L_E(\operatorname{re} E_0) = 140 \text{ dB}$$
$$N_M(\operatorname{re} M_0) = -110 \text{ dB}$$

$$\Delta L_G = 20 \text{ dB}.$$

In Style 3, no suffix, subscript or qualifier of any kind follows the unit symbol 'dB'.

9.3 Summary

Styles 1 and 2 are summarized in Table 23.

Table 23 – Summary table: Sensitivity level and system gain vs frequency: $E_0 = 1 \,\mu Pa^2s$; $M_0 = 1 \,V/\mu Pa$.

What	Style 1 (IEC, A)	Style 2 (UA-R)	Style 3 (IEC, B)
Level (L)	$L_{E/(1 \mu \mathrm{Pa}^2 \mathrm{s})}$	$L_E = 140 \text{ dB re } 1 \mu\text{Pa}^2\text{s}$	L_E (re 1 µPa ² s)
	= 140 dB		= 140 dB
Sensitivity level	$N_{M/(1 V \mu P a^{-1})}$	N _M	N_M (re 1 V μ Pa ⁻¹)
(N)	= -110 dB	$= -110 \text{ dB re } 1 \text{ V} \mu \text{Pa}^{-1}$	= -110 dB
Level	$\Delta L_G = 20 \text{ dB}$	$\Delta L_G = 20 \text{ dB}$	$\Delta L_G = 20 \text{ dB}$
difference (ΔL)			

No subscripts shall be used with the unit symbol (dB, not dB_{rms}). No suffixes shall be used following the unit symbol dB except (with Style 2 only) of the form "re P_0 ", where P_0 represents the international standard reference value of the power quantity.

9.4 Reporting quantities in a table

The same three styles may be used in tables.

9.4.1 Style 1 (IEC standard, A)

In Style 1, quantities (including but not limited to levels) shall be tabulated in the form illustrated by Table 24 (example showing SEL vs distance) and Table 25 (example showing sensitivity level and pre-amplifier gain vs frequency).

Table 24 – E	Example 1	(Style	1): Sound	exposure	level vs	distance.
--------------	-----------	--------	-----------	----------	----------	-----------

<i>x/</i> m	$L_{E/(1 \mu Pa^2 s)}/ dB$
10	160
100	140
1000	120

Table 25 – Example 2 (Style 1): Sensitivity level and pre-amplifier gain vs frequency.

<i>f/</i> kHz	$N_{M/(1 V \mu P a^{-1})} / dB$	ΔL_G / dB
10	-115	24
100	-110	20
1000	-112	28

9.4.2 Style 2 (UA-R)

In Style 2, levels shall be tabulated in the form illustrated by Table 26 (example showing SEL vs distance) and Table 27 (example showing sensitivity level and preamplifier gain vs frequency).

Table 26 - Examp	ole 1 (S	tyle 2): Sound	exposure level	vs distance.
		· · · · · · · · · · · · · · · · · · ·		

x	L_E	
10 m	160 dB re 1 μPa ² s	
100 m	140 dB re 1 μPa ² s	
1000 m	120 dB re 1 μPa ² s	

Table 27 – Example 2 (Style 2): Sensitivity level and pre-amplifier gain vs frequency.

f	N_M	ΔL_G
10 kHz	–115 dB re 1 V μPa ⁻¹	24 dB
100 kHz	–110 dB re 1 V μPa ⁻¹	20 dB
1000 kHz	–112 dB re 1 V μPa ⁻¹	28 dB

9.4.3 Style 3 (IEC standard, B)

In Style 3, levels shall be tabulated in the form illustrated by Table 28 (example showing SEL vs distance) and Table 29 (example showing sensitivity level and preamplifier gain vs frequency).

Table 28 - Example	(Style 3): Sound exposure	level vs distance.
--------------------	---------------------------	--------------------

x	L_E (re 1 µPa ² s)	
10 m	160 dB	
100 m	140 dB	
1000 m	120 dB	

Table 29 – Example 2 (Style 3): Sensitivity level and pre-amplifier gain vs frequency.

f	N_M (re 1 V μ Pa ⁻¹)	ΔL_G
10 kHz	-115 dB	24 dB
100 kHz	-110 dB	20 dB
1000 kHz	-112 dB	28 dB

9.5 Deprecation of dB_x, dB X and dBX

Subscripts of the form dB_x (e.g., dB_{rms} , dB_{peak} , dB_{SPL} , dB_{SEL} , dB_M , dB_{ht}) are deprecated.

Suffixes of the form dB X (e.g., "dB rms", "dB peak", "dB SPL", "dB SEL", "dB M", "dB ht") are deprecated.

Suffixes of the form dBX (e.g., "dBrms", "dBpeak", "dBSPL", "dBSEL", "dBM", "dBht", "dBFS", "dBc") are deprecated.

9.6 Use of abbreviations in equations

With the exception of "SNR" as an abbreviation of "signal to noise level difference", symbols (not abbreviations) shall be used to represent quantities and units in equations.

10 References

Ainslie, M. A. (2015). A Century of Sonar: Planetary Oceanography, Underwater Noise Monitoring, and the Terminology of Underwater Sound, Acoustics Today, Vol 11 Issue 1, pp12-19 (2015).

Ainslie, M. A., Miksis-Olds, J. L., Martin, B., Heaney, K., de Jong, C. A. F., von Benda-Beckman, A. M., and Lyons, A. P. (2017a). ADEON Soundscape and Modeling Metadata Standard. Version 2.0 DRAFT. Technical report by TNO for ADEON Prime Contract No. M16PC00003.

Ainslie et al. (2017b). M. A. Ainslie, C. A. F. de Jong, M. B. Halvorsen, D. R. Ketten, E&P Sound and Marine Life JIP Standard: Underwater Acoustics – Terminology, TNO 2016 R11076.

Ainslie and de Jong (2017). M. A. Ainslie, C. A. F. de Jong, E&P Sound and Marine Life JIP Standard: Underwater Acoustics – Reporting, TNO 2016 R11188 (2017).

ANSI S1.1-2013. AMERICAN NATIONAL STANDARD Acoustical Terminology, Standards Secretariat, Acoustical Society of America, 35 Pinelawn Road, Suite 114 E, Melville, NY 11747-3177, October 2013.

ANSI S1.6-2016. American National Standard – Preferred Frequencies and Filter Band Center Frequencies for Acoustical Measurements

Astronomical Applications Department of the U.S. Naval Observatory (USNO, 2011). Available from http://aa.usno.navy.mil (last accessed 2017-05-20).

Dekeling, R.P.A., Tasker, M.L., Van der Graaf, A.J., Ainslie, M.A, Andersson, M.H., André, M., Borsani, J.F., Brensing, K., Castellote, M., Cronin, D., Dalen, J., Folegot, T., Leaper, R., Pajala, J., Redman, P., Robinson, S.P., Sigray, P., Sutton, G., Thomsen, F., Werner, S., Wittekind, D., Young, J.V., Monitoring Guidance for Underwater Noise in European Seas, Part I: Executive Summary, JRC Scientific and Policy Report EUR 26557 EN, Publications Office of the European Union, Luxembourg, 2014, doi: 10.2788/29293. Available from http://mcc.jrc.ec.europa.eu/dev.py?N=29&O=224&titre_chap=D11 Energy and Noise&titre_page=Methodological standards (last accessed 2017-05-21)

Dekeling, R.P.A., Tasker, M.L., Van der Graaf, A.J., Ainslie, M.A, Andersson, M.H., André, M., Borsani, J.F., Brensing, K., Castellote, M., Cronin, D., Dalen, J., Folegot, T., Leaper, R., Pajala, J., Redman, P., Robinson, S.P., Sigray, P., Sutton, G., Thomsen, F., Werner, S., Wittekind, D., Young, J.V., Monitoring Guidance for Underwater Noise in European Seas, Part II: Monitoring Guidance Specifications, JRC Scientific and Policy Report EUR 26555 EN, Publications Office of the European Union, Luxembourg, 2014, doi: 10.2788/27158. Available from http://mcc.jrc.ec.europa.eu/dev.py?N=29&O=224&titre_chap=D11 Energy and Noise&titre_page=Methodological standards (last accessed 2017-05-21)

Dugan, P., Pourhomayoun, M., Shiu, Y., Paradis, R., Rice, A., & Clark, C. (2013). Using high performance computing to explore large complex bioacoustic

soundscapes: Case study for right whale acoustics. Procedia Computer Science, 20, 156-162.

European Commission (EC) (2008). DIRECTIVE 2008/56/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) (Text with EEA relevance). Available from http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32008L0056 (last accessed 2017-05-21).

European Commission (EC) (2010). COMMISSION DECISION of 1 September 2010 on criteria and methodological standards on good environmental status of marine waters (notified under document C (2010) 5956) (Text with EEA relevance) (2010/477/EU). Available from http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:232:0014:0024:EN:PDF (last accessed 2017-05-21).

Fay, R. (2009). Soundscapes and the sense of hearing of fishes. Integrative Zoology, 4(1), 26-32.

Hastings, P. A., & Širović, A. (2015). Soundscapes offer unique opportunities for studies of fish communities. Proceedings of the National Academy of Sciences, 112(19), 5866-5867.

Kevin Heaney, Bruce Martin, Jennifer Miksis-Olds, Tim Moore, Joseph Warren, Michael Ainslie. (2017). ADEON Data Processing Specification. Draft report.

Houser, D. S., Yost, W., Burkard, R., Finneran, J. J., Reichmuth, C., & Mulsow, J. (2017). A review of the history, development and application of auditory weighting functions in humans and marine mammals. The Journal of the Acoustical Society of America, 141(3), 1371-1413.

Hulse, S. H. (2002). Auditory scene analysis in animal communication. Advances in the Study of Behavior, 31, 163-200.

IEC 60027-3:2002. International Standard IEC 60027-3 Letter symbols to be used in electrical technology – Part 3: Logarithmic and related quantities, International Electrotechnical Commission (2002).

IEC 60050-801:1994 "International Electrotechnical Vocabulary: Acoustics and electroacoustics" (International Electrotechnical Commission, Geneva). Available from http://www.electropedia.org/ (last accessed 2014-08-08).

IEC 61260-1:2014. Electroacoustics - Octave-band and fractional-octave-band filters - Part 1: Specifications.

IEC 80000-13:2008. International Standard IEC 80000-13 Quantities and Units – Part 13: Information science and technology, International Electrotechnical Commission (2008).

IEEE Std 260.1-2004. IEEE Standard Letter Symbols for Units of Measurement (SI Units, Customary Inch-Pound Units, and Certain Other Units), IEEE Std 260.1[™]-2004 (Revision of IEEE Std 260.1-1993)

IEEE 1241 IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, IEEE Std 1241[™]-2010, IEEE, 3 Park Avenue, New York, NY 10016-5997, USA (2011)

International Bureau of Weights and Measures (French: Bureau international des poids et mesures, or BIPM). The International System of Units (SI), 8th edition, 2006, *Organisation Intergouvernementale de la Convention du Mètre* (2006). 2014 amendment.

International Whaling Commission (IWC) (2014). Joint Workshop Report: Predicting sound fields – global soundscape modelling to inform management of cetaceans and anthropogenic noise, 15-16 April 2014, Leiden, Netherlands. Available from http://scor-int.org/IQOE/Leiden_Report.pdf (last accessed 2017-05-21).

ISO 12913-1:2014. Acoustics -- Soundscape -- Part 1: Definition and conceptual framework, International Organization for Standardization (ISO), Geneva, Switzerland.

ISO 1683:2015. Acoustics -- Preferred reference values for acoustical and vibratory levels, International Organization for Standardization (ISO), Geneva, Switzerland.

ISO 18405:2017. Underwater acoustics — Terminology, International Organization for Standardization (ISO), Geneva, Switzerland, April 2017. Available from http://www.iso.org/iso/catalogue_detail.htm?csnumber=62406 (last accessed 2017-05-21).

ISO 1996-1:2016. Acoustics -- Description, measurement and assessment of environmental noise -- Part 1: Basic quantities and assessment procedures, International Organization for Standardization (ISO), Geneva, Switzerland.

ISO 80000-1:2009. International Standard ISO 80000-1 Quantities and Units – Part 1: General, International Organization for Standardization (2009).

ISO 80000-2:2009. International Standard ISO 80000-2 Quantities and Units – Part 2: Mathematical signs and symbols to be used in the natural sciences and technology, International Organization for Standardization (2009).

ISO 80000-3:2006. International Standard ISO 80000-3 Quantities and Units – Part 3: Space and Time, International Organization for Standardization (2006).

ISO 80000-8:2007. International Standard ISO 80000-8 Quantities and Units – Part 8: Acoustics, International Organization for Standardization (2007).

ISO/IEC 80000. International Standard ISO 80000 Quantities and Units, International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) (2009). Johnson, C. S. (1991). Hearing thresholds for periodic 60-kHz tone pulses in the beluga whale. The Journal of the Acoustical Society of America, 89(6), 2996-3001.

Kastelein, R. A., Hoek, L., de Jong, C. A., & Wensveen, P. J. (2010a). The effect of signal duration on the underwater detection thresholds of a harbor porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz. The Journal of the Acoustical Society of America, 128(5), 3211-3222.

Kastelein, R. A., Hoek, L., Wensveen, P. J., Terhune, J. M., & de Jong, C. A. (2010b). The effect of signal duration on the underwater hearing thresholds of two harbor seals (Phoca vitulina) for single tonal signals between 0.2 and 40 kHz. The Journal of the Acoustical Society of America, 127(2), 1135-1145.

Kuperman, W. A., & Ferla, M. C. (1985). A shallow water experiment to determine the source spectrum level of wind-generated noise. The Journal of the Acoustical Society of America, 77(6), 2067-2073.

Lemon, D., Johnston, P., Buermans, J., Loos, E., Borstad, G., & Brown, L. (2012, October). Multiple-frequency moored sonar for continuous observations of zooplankton and fish. In Oceans, 2012 (pp. 1-6). IEEE.

Leroy, E. C., Samaran, F., Bonnel, J., & Royer, J. Y. (2016). Seasonal and Diel Vocalization Patterns of Antarctic Blue Whale (Balaenoptera musculus intermedia) in the Southern Indian Ocean: A Multi-Year and Multi-Site Study. PloS one, 11(11), e0163587.

Martin B., C.A. Hillis, J. Miksis-Olds, M. Ainslie, and J. Warren. (2017). ADEON Hardware Specification. Document 01412, Version 1.1 DRAFT. Technical report by JASCO Applied Sciences for ADEON.

Moore, P. W. B., Hall, R. W., Friedl, W. A., and Nachtigall, P. E. (1984). "The critical interval in dolphin echolocation: What is it?," J. Acoust. Soc. Am. 76, 314–317.

Pijanowski, B.C., Villanueva-Rivera, L.J., Dumyahn, S.L., Farina, A., Krause, B.L., Napoletano, B.M., Gage, S.H., Pieretti, N., 2011. Soundscape ecology: the science of sound in the landscape. BioScience 61, 203–216.

Quan, Y., & Harris, J. M. (1997). Seismic attenuation tomography using the frequency shift method. Geophysics, 62(3), 895-905.

Scrimger, P., & Heitmeyer, R. M. (1991). Acoustic source level measurements for a variety of merchant ships. The Journal of the Acoustical Society of America, 89(2), 691-699.

Sertlek, H. O. (2016). Aria of the Dutch North Sea (Doctoral dissertation, University of Leiden, the Netherlands). Available from https://openaccess.leidenuniv.nl/handle/1887/40158 (last accessed 2017-05-25).

Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in neurosciences, 34(3), 114-123.

Vel'min, V. A., and Dubrovskii, N. A. (1976). "The critical interval of active hearing in dolphins," Sov. Phys. Acoust. 2, 351–352.

Wales, S. C., & Heitmeyer, R. M. (2002). An ensemble source spectra model for merchant ship-radiated noise. The Journal of the Acoustical Society of America, 111(3), 1211-1231.

Warren et al. (2017). DRAFT ADEON Calibration and Deployment Good Practice Guide Version 2. Atlantic Deepwater Ecosystem Observatory Network (ADEON): An Integrated System. Contract: M16PC00003.

A Selected terminology from IEEE 1421 (informative)

Selected terminology for digital parameters from IEEE 1421 is presented in Table 30.

Table 30 – Selected terminology from IEEE 1421

term	IEEE 1421 definition		
analog-to-digital converter (ADC)	A device that converts a continuous signal into a discrete-time discrete-amplitude signal.		
effective	A measure of the signal-to-noise-and-distortion ratio used to compare actual analog-to-		
number of bits	digital converter (ADC) performance to an ideal ADC.		
(ENOB)			
full-scale range	The difference between the most positive and most negative analog inputs of a converter's		
(FSR)	operating range. For an N-bit converter, FSR is given by: $ESP = (2^N)(ideal and a width)$		
	$FSR = (2^{-1})(10001 \text{ code width})$		
full-scale signal	A full-scale signal is one whose peak-to-peak amplitude spans the entire range of input		
	values recordable by the analog-to-digital converter under test		
least significant	With reference to analog-to-digital converter input signal amplitude, an LSB is synonymous		
bit (LSB)	with one ideal code bin width.		
noise (total)	Any deviation between the outputs signal (converted to input units) and the input signal		
	except deviations caused by linear time-invariant system response (gain and phase shift),		
	or a dc level shift. For example, hoise includes the effects of random errors (random errors)		
	and aperture uncertainty. See also: random noise		
random noise	A non-deterministic fluctuation in the output of an analog-to-digital converter described by		
random noise	its frequency spectrum and its amplitude statistical properties. See also: noise .		
signal-to-noise-	For a pure sine-wave input of specified amplitude and frequency, the ratio of the root-		
and-distortion	mean-square (rms) amplitude of the analog-to-digital converter output signal to the rms		
ratio (SINAD)	amplitude of the output noise, where noise is defined as above to include not only random		
	errors but also nonlinear distortion and the effects of sampling time errors.		
signal-to-noise	For a pure sine-wave input of specified amplitude and frequency, the ratio of the root-		
ratio (SNR)	mean-square (rms) amplitude of the analog-to-digital converter output signal to the rms		
	amplitude of the output noise, this does not include the harmonic distortion components		
	that are used for the estimate of THD. Note: This was called signal-to-non-harmonic ratio		
spurious_free	(SNTR) III (the previous version of this standard.		
dynamic range	of the analog-to-digital converter's output averaged spectral component at the input		
(SFDR)	frequency. f_i to the amplitude of the largest harmonic or spurious spectral component		
(-)	observed over the full Nyquist band, $\max\{ X(f_h) \text{ or } X(f_s) \}$:		
	$SFDR(dB) = 20\log_{10} \left \frac{ X_{avm}(f_i) }{\max \left\ X_{avm}(f_b) \right\ \text{ or } \left X_{avm}(f_s) \right \right\}}$		
	$\left(f_{s},f_{h}\right)$		
	where		
	$X_{\rm avm}$ is the averaged spectrum of the ADC output		
	f_i is the input signal frequency		
	f_h and f_s are the frequencies of the set of harmonic and spurious spectral components		

term	IEEE 1421 definition
total harmonic	For a pure sine-wave input of specified amplitude and frequency, the root-sum-of-squares
distortion (THD)	(rss) of all the harmonic distortion components including their aliases in the spectral output
	of the analog-to-digital converter. Unless otherwise specified, THD is estimated by the rss
	of the second through the tenth harmonics, inclusive. THD is often expressed as a decibel
	ratio with respect to the root-mean-square amplitude of the output component at the input
	frequency.

B Non-acoustical terminology (normative)

In general the International System of Quantities (ISQ), as described in ISO/IEC 80000, shall be followed. If by exception a need arises to use a unit outside the ISQ, IEEE Std 260.1 (e.g., for a conversion from liters to cubic inches to characterize the volume of an airgun array) shall be followed. For non-acoustical terminology, the following standards are followed, in order of decreasing precedence

- non-acoustical ADEON terminology (this appendix)
- the JIP terminology standard Ainslie et al. (2017b), henceforth abbreviated UA-T
- ISO/IEC 80000 Quantities and Units
- The International System of Units (SI): 8th edition (BIPM, 2014)

Units of distance, speed and angle are listed in (Table 31). Units of data storage are listed in Table 32.

name of unit		definition
nautical mile	nmi	1852 m
knot	kn	1 nmi/h
degree (angle)	0	(2π/360) rad
minute (angle)	'	(1/60)°
second (angle)	"	(1/60)'

Table 31 – Units of distance, speed and angle (from ISO 80000-3:2006).

name of unit	Symbol	definition	notes
kilobyte	kB	1000 B	not 1024 B
megabyte	MB	1000 kB	not 1024 kB
gigabyte	GB	1000 MB	not 1024 MB
terabyte	TB	1000 GB	not 1024 GB
petabyte	PB	1000 TB	not 1024 TB
exabyte	EB	1000 PB	not 1024 PB
zettabyte	ZB	1000 EB	not 1024 EB
yottabyte	YB	1000 ZB	not 1024 ZB

Table 32 – Units of data storage (IEC 80000-13:2008).